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Abstract Programmable logic controllers (PLCs) are heav-
ily used in industrial control systems, because of their high
capacity of simultaneous input/output processing capabili-
ties. Characteristically, PLC systems are used inmission crit-
ical systems, and PLC software needs to conform real-time
constraints in order to work properly. Since PLC program-
ming requires mastering low-level instructions or assembly
like languages, an important step in PLC software produc-
tion is modelling using a formal approach like Petri nets
or automata. Afterward, PLC software is produced semiau-
tomatically from the model and refined iteratively. Model
checking, on the other hand, is a well-known software verifi-
cation approach, where typically a set of timed properties are
verified by exploring the transition system produced from the
softwaremodel at hand. Naturally, model checking is applied
in a variety of ways to verify the correctness of PLC-based
software. In this paper, we provide a broad view about the
difficulties that are encountered during the model checking
process applied at the verification phase of PLC software pro-
duction. We classify the approaches from two different per-
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spectives: first, the model checking approach/tool used in the
verification process, and second, the software model/source
code and its transformation to model checker’s specification
language. In a nutshell, we have mainly examined SPIN,
SMV, and UPPAAL-based model checking activities and
model construction using Instruction Lists (and alike), Func-
tion Block Diagrams, and Petri nets/automata-based model
construction activities. As a result of our studies, we provide
a comparison among the studies in the literature regarding
various aspects like their application areas, performance con-
siderations, and model checking processes. Our survey can
be used to provide guidance for the scholars and practitioners
planning to integrate model checking to PLC-based software
verification activities.

Keywords Model checking · Programmable logic
controllers · Program verification

1 Introduction

Programmable logic controllers (PLCs) canbe seen as special
kind of computers, which are capable of processing a high
number of I/O operations conforming real-time constraints.
A typical PLC’s processing cycle is arranged in three dis-
tinct sections where the input data are read into memory, data
in the memory are processed, and the output data are writ-
ten. The essence in widespread usage of PLCs is the limited
duration of this cycle where input processing and produc-
tion of outputs should be produced in hard deadlines. This
situation makes PLCs a key artifact in real-time automation
and control processes like railway interlocking systems [30,
89], nuclear power plants [57,59,115], and manufacturing
conveyors [19,63].
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Being a digital computer, a PLC needs to be programmed
in order to serve different purposes in different areas of usage.
Tremendous increase in the utilization of PLCs in the last
decades has also risen the number of PLCmanufacturers and
hence the variety in programming/modelling aspects. During
the development of PLC programming, the industry has gone
a series of evolutions in program specification and the pro-
gramming language to be used, forming an industry standard
called IEC 61131 [61]. A part of this standard defines com-
mon programming elements like variables and data types for
a total of four programming languages in an either graphical
or textual format. Most of the tools and practices in today’s
PLC programming activities are based on these program-
ming languages, namely Instruction Lists (IL), Structured
Texts (STs), Function Block Diagrams (FBD), and Ladder
Diagrams (LD).

With respect to conventional computer programming tech-
niques, PLC programming is performed in low-level pro-
gramming languages where bitwise operations and Boolean
variables are frequently used. This situation makes under-
standing and debugging of PLC programs inherently hard,
increasing the importance of testing and verification of PLC
programs. Even more importantly, PLCs are mostly used in
mission critical real-time systemswhere the flaws in the com-
plete correctness of the system software generally lead to pro-
duce hazardous effects. These two aspects combined make it
very important to verify the correctness of PLC software in
a rigorous manner.

The intense need for the verification of PLC software has
given formal methods a key aspect in this area for two main
reasons. Firstly, because of the mathematical rigor behind
the formal methods, it is able to provide proofs for the cor-
rectness of software/model under consideration. Secondly,
it is possible to apply formal methods on different levels of
abstractions of the target system, which makes it possible
to work on early stages of the software design. This prop-
erty of formal methods is useful since it is known that the
most serious (and hard to fix) software defects are known to
arise at the early design stage of software production. The
two prominent methods in formal verification are known to
be theorem proving and model checking. These methods are
applied in a large context in PLC software verification; how-
ever, we will be focusing on model checking practices in this
paper’s context.

Model checking is a widely used formal method where
the system to be verified is represented by a suitable model
and the desired property to be verified is checked by sys-
tematically exploring all the possible states that the mod-
elled system may go through in a brute-force manner. By
considering all possible scenarios, the verified property can
be guaranteed depending on the correctness of the system
model. For instance, a common model checking practice is
to build the model using a state transition system and to

specify the temporal properties of the system using linear
temporal logic (LTL) [93]. This way, the automated model
checking process can be applied by performing an exhaus-
tive state space search over the multiplication of the tran-
sition system and the temporal specification to be checked.
The transition system used in model checking is constructed
by parallel composition of software/hardware component
models.

Model checking is specifically useful when it comes to
the verification of PLC systems, because it can be easier to
model low-level PLC software as state transition systems
compared to conventional computer programming. More-
over, since the PLC programs need to be transferred fre-
quently among different PLC hardwares, modelling takes an
important place in PLC programming in abstracting away
unnecessary details. Even more, standard graphical lan-
guages like FBDs or Sequential Function Charts (SFCs) [61]
and widely accepted modelling languages like Petri nets [92]
have the potential to be translated to transitions systemsmore
easily.

Following the progress in PLC programming and model
checking, a large number of integration studies have been car-
ried out in the related fields during the last decades. Most of
these studies were about the translation challenges between
formalisms used in PLC programming and a specific model
checking tool. In this paper, we present a broad overview
of these studies and summarize the challenges faced in the
course. We present a twofold classification in the paper:
the main classification groups the studies according to the
programming/modelling methodology used in expressing
PLC program and the target model checker. A secondary
classification for each programming/modelling methodol-
ogy is also presented where a number of important aspects
(e.g., application context, applied system size, performance,
and automation level) about each study in the class are
compared.

For our main classification, we have firstly used the five
main programming languages in the IEC 61131-3 standard,
which are Ladder Diagrams, ILs, ST, FBDs, and SFCs. In
addition to those languages, we have also included the stud-
ies that use other formalisms, mainly Petri nets as well as
PLC-Automata [24], condition/event systems [104], and a
few others that are explained in Sect. 3.4. In our main clas-
sification, we have also included model checking languages
that were used, mainly SMV [80] (NuSMV, CadanceSMV),
Timed Automata [2] (UPPAAL, Kronos), Promela/SPIN
[53], and a few others. As a result of this classification,
we also aim to reveal, if exists, the relationships between
certain PLC programming languages and model checking
methods.

For our secondary classification, we have enlisted some
important properties of the studies for each group of PLCpro-
gramming languages. These properties include application
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areas, system size, performance evaluation (if any), level of
automation, and specification representation. By examining
the commonalities among these properties, we can comment
about some certain characteristics of PLC programming lan-
guages from the perspective of model checking.

As a result of our classification study, we present impor-
tant common challenges that are present in the examined
studies and discuss future studies that can be fruitful in the
research area such as the use of timer on-delays and clas-
sical state space explosion problem. Our findings also pro-
vide a general overview for the practitioners who wish to
apply model checking on a PLC-based system. The state-of-
the-art application area for model checking PLC programs is
transforming programs represented byFunctionalBlockDia-
grams (FBDs) to either SMV or UPPAALmodels depending
on the necessity to consider time explicitly in the model. Our
overview gives insight about the type of model checkers used
for specific types of PLC programming languages, the size
of the system for the model checking to be applied, and the
obstacles that may be present during the process.

The rest of the paper is organized as follows: Sect. 2 pro-
vides an overview of the merits and weaknesses of PLC
programming compared to conventional programming, and
Sect. 3 introduces PLC programming techniques included in
the paper. Section 4 begins with the explanation of research
methodology and an overview of related surveys in the indus-
trial automation and PLC programming and later present the
main classification of the studies that will be covered in the
paper. Overview of studies for each group of PLC program-
ming language is presented in Sects. 5–8 together with the
discussion of secondary classification results.We also review
recent studies that practically apply PLC model checking on
industrial-sized systems in Sect. 9. In Sect. 10, we present
a discussion about the challenges present in the examined
papers and clarify someopenproblems and future challenges.
Finally, we conclude the paper in Sect. 11.

2 PLC programming

Historically, PLC programming has grown from the roots
of ladder diagrams (see Fig. 4) almost directly modelling
the early usage of relays in control systems [61]. The basic
usage principles of LDs can be used to understand neatly
how PLC programming works in general. In LDs, a series
of on/off switches (relays) are used in conjunction and dis-
junction in order to connect PLC inputs to PLC outputs rep-
resenting the control logic as a propositional logic formula.
In PLC programming, inputs and outputs are predefined in
PLC hardware making the programming simply a correct
selection of inputs/outputs and application of control logic.
Roughly comparing to conventional computer programming
where a new input/output variable is defined as the program

code evolves, PLC programs usually start with a full range
of I/O as refinements are continuously applied during the
development process.

Another major difference in PLC programming is the exe-
cution logic of the PLC program after it has been developed.
As mentioned earlier, PLC programs follow a “read input”–
“execute logic”–“update outputs” approach, which results in
the re-execution of the PLC program in each execution cycle.
In terms of execution, PLC programs are prepared under an
inherent parallel execution approach, because of their basis
in electrical control circuits. For instance in LDs, each relay
lane (which is also called a rung) is executed in parallel. This
execution approach and the large number of I/O makes PLC
programs undesirably large and complicated making them
very hard to debug and maintain.

There are approaches like SFCs (see Sect. 3.3.1) that can
be used to abstract away subsections of LDs as blocks to pro-
vide a perspective to the overall PLC program. However, too
much abstraction can be undesired for PLC programs since
it can make the PLC program even harder to maintain during
system failures. The main usage of PLCs and PLC programs
ismanufacturing, conveyor systems, and critical systems like
power plants making long downtimes unacceptable. This sit-
uation brings up the preference of large program size and
under-abstraction rather than longer debugging and mainte-
nance durations.

All of the characteristics of PLC programming discussed
above makes it an appropriate application area for model
checking, because of the following three reasons such as:
(i) The program logic of PLC programs can be easily trans-
formed to propositional logic and state transition systems;
(ii) PLC programs inherently run parallel; and (iii) PLC pro-
grams are mostly used in real-time systems making verifica-
tion a more important issue. There also exists more recent
techniques than LDs and SFCs in PLC programming, we
enlist and examine them in the following section.

3 PLC program models

Among model checking practices in the area of PLC soft-
ware, our main interest is the program code/model that was
used as the main artifact when performing the translation to
the modelling language of the model checker. During this
translation process, PLC program models are also used as a
basis in large number of studies instead of PLCprogramcode.
In these studies, PLCprograms are generated eithermanually
or automatically; however, translation to the model checking
language is done using the models. For this reason, we also
include a few modelling languages to our classification in
addition to the standard PLC programming languages.

In the industry standard IEC 61131-3, two main groups
of programming languages are included, namely textual pro-
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gramming languages and graphical programming languages.
Our classification ismainly based on this definition; however,
there also exist higher level of graphical modelling languages
that providemore abstractmodels for the organizationofPLC
programs.Oneof those languages is SFCswhich structure the
internal organization of a control program, treating blocks of
PLC program as components. SFCs are also included in IEC
61131-3 standard providing a step of higher-level modelling
to programming languages defined in the standard. Having a
strong formal basis and allowing concurrent execution mod-
elling, Petri nets are another modelling language frequently
used in the modelling of PLC programs.

Together with the mentioned PLC programming stan-
dards, we also treat SFCs and Petri nets as a separate class of
studies in model checking PLC programs since there exists a
large number of studies using these modelling languages as
basis. In this section, we continue by giving brief overviews
of these languages since we will be frequently mentioning
properties of them through the remainder of the paper. In
addition to these six categories, there are also some other
studies that we aggregate into a distinct group including non-
conventional ways of PLCprogram specification.We explain
those studies in more detail in Sect. 3.4.

3.1 Text-based programming languages

The two text-based models introduced in the industry stan-
dard are ILs and STs. Both of these programming lan-
guages resemble conventional low-level programming lan-
guages and take their roots from the very early days of PLC
technology.

ILs are the primary means of PLC programming similar
to an assembly language in syntax. Instructions in the IL are
imperative operations that may have parameters and use reg-
isters to store values. IL programs also use the very basic
components of the PLC hardware during its operations. IL
is very frequently used in translation to model checking lan-
guages since almost any other programming language used
in PLC programming can be converted to IL programs. An
example IL program can be seen in Fig. 1.

Structured Lists, on the other hand, take its roots from
Pascal programming language allowing conditional and iter-
ation statements included in the programs. Those kind of
functionality can be realized by using jump statements in IL.

LD Speed
GT 1000
JMPCN VOLTS OK
LD Volts

VOLTS OK LD 1
ST %Q75

Fig. 1 An example PLC program snippet written in Instruction List
[74]

IF Speed > 1000 Then
Vo l t s := Vo l t s − 10 ;

END IF ;
%Q75 := 1 ;

Fig. 2 An example PLC program snippet written in Structured Text
(equivalent of Fig. 1)

Fig. 3 Function block network of a PLC software [103]

ST also defines a more convenient syntax for defining func-
tions and function blocks forming a higher-level language
when compared to IL. An example ST program can be seen
in Fig. 2.

3.2 Graphical programming languages

3.2.1 Function Block Diagrams

Function blocks are defined as the equivalent of integrated
circuits for the PLC programs. They gather the functions sup-
plied by the PLC to perform a specific functionality. These
functions can be elementary blocks performing basic func-
tions like move and compare or composite blocks that were
constructed by connecting a set of functions. Having well-
defined input and output, function blocks can be used like
black boxes by the PLC programmers.

FBDs are the graphical structures that contain informa-
tion about how the function blocks inside PLC program are
related and how the information is going to flow among them.
An example program with FBDs can be seen in Fig. 3. By
their nature, FBDs mimic different levels of abstractions by
encapsulating the elementary functions and interconnected
function blocks. This makes FBDs very popular in model
checking FBD programs, because reduction in system com-
plexity by applying abstractions is one of the key practices
in reducing the state space during model checking process.

3.2.2 Ladder Diagrams

LDs, originally used for designing relay racks, have evolved
into a programming language for PLC controllers in time.
Also expressed as ladder logic or relay ladder logic, ladder
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Fig. 4 An example Ladder Diagram snippet [56]

diagrams actually are composed of a series of rules, called
rungs, which can be executed sequentially during a PLC’s
cycle. The concept of rung can be seen as the basic building
blocks of the ladder diagrams, so most of the literature on
translating LDs tomodel checkingmodels is centered around
translating rungs.

There may be elements in each rung which are executed
from left to right in a sequential way. This way, the output of
each element in a rung becomes an input to another element.
There may exist two important entities in each rung of a LD
called coils and contacts. Coils are always to the rightmost
side and act as a boolean variable output. On the other hand,
contacts represent boolean input variables that may be either
open or closed (negated). Connecting the elements in a rung
in a serial way forms a logical conjunction while connecting
in parallel forms a logical disjunction. Moreover, function
blocks can be included in rungs for some PLC vendors pro-
gramming tools as well.

For instance, the LD in Fig. 4 contains only one coil
labeled as f at the upper right side of the figure. The ele-
ments labeled a to e are contacts, and each horizontal line
containing contacts on them is rungs; there exists three rungs
in the example, which contains contact a–b, c–e, and d,
respectively. LDs can be interpreted as propositional logic
formulae easily, which makes this kind of interpretation a
frequently studied topic in model checking PLC software.
An example program along with LDs can be seen in Fig. 4.
This piece of LD corresponds to the propositional logic for-
mula ((a ∨ ¬ f ∨ c) ∧ (¬b ∨ e)) ↔ f

3.3 Modelling languages

3.3.1 Sequential Function Charts

SFCs are defined as elements structuring the internal orga-
nization of PLC programs and function blocks. Most of the
time, each block in an SFC contains a LD pointing to a lower-
level abstraction in the PLCprogram.Not only SFCs are used
to provide a broader view of the program with their structure
similar to flowchart diagrams but also they can introduce par-
allelization by being able to representmultiple programflows
within a single diagram. Moreover, SFCs were inspired by
Petri nets and an older Grafcet standard, so that it would be
more appropriate to categorize SFC-based studies separately

Fig. 5 Steps and functions in a Sequential Function Chart method [39]

Fig. 6 An example Petri net model

from programming language studies, but rather as modelling
studies with Petri nets.

SFCs bring structure to the elements inside a PLCprogram
by defining steps, linked with action blocks and transitions.
Programflow is actually composed of a series of special “step
transitions” whereby in each transition, the emerging step of
the transition is deactivated and the next step is activated. An
example to those steps and transitions of a SFC can be seen
in Fig. 5. Steps can be linked with an action block, which
performs a control action when a step is activated. Each step
in this execution can be modelled as one of the standard
programming languages defined above or as an SFC model
recursively. SFC program explicitly represents the execution
order of program component units, which can be arranged in
an alternating and/or parallel way.

3.3.2 Petri nets

One of themost commonly used formal modelling approach-
es in describingPLCprograms is usingPetri nets [92].APetri
net consists of places, transitions, and arcs where each place
may hold a number of tokens. Tokens are used to bring con-
currency in Petri net execution, where a number of tokens
can be transiting among places in a Petri net. Transmission
of a token from one place to another is constrained by the
transitions and arcs connecting places to each other. Two or
more places can be connected to each other over one transac-
tion and multiple arcs. In order to connect two places, there
should be an arc from one of the places to a transition and
another arc from that transition to the other place. An exam-
ple program modelled with a Petri net can be seen in Fig. 6.
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The tokens (indicated with black dots) inside places (indi-
cated with “P” labels) are the basic elements used to model
parallel executions by floating over the transitions (indicated
with “T” labels) between the places. For the initial configu-
ration, an arbitrary number of tokens can be present in the
Petri net. Tokens can perform place transitions only if there
exists a transition between two places. Theremay bemultiple
tokens inside a place at a time. During Petri net run, tokens
perform transitions between the places at each step follow-
ing the transition rules, which drive the parallel behavior of
tokens. For example, if there exists a transition from a single
place to a multiple number of places, the token is duplicated
for each destination place. Conversely, if a transition con-
nects many (assume n) places to a single destination place,
there should be at least one token in each source place that is
going to be merged with others in the destination place after
the transition occurs.

Petri nets are frequently used in PLC program modelling
and model checking purposes since they can be converted to
PLC programs relatively easier than most of the other for-
mal modelling approaches. Moreover, Petri nets are also fre-
quently used inmodel checking purposes having a strong tool
and analyzer support in the field. Duringmodelling PLC pro-
grams, many Petri net variants like Signal Interpreted Petri
nets and Colored Petri nets [58] are used.

3.4 Other approaches

Studies on model checking PLC programs are not limited to
the standard and conventional techniques described abovebut
also a large number of studies exist using different kinds of
programming languages and modelling approaches. Below,
we give a brief description for each of the concepts used
during our analysis in Sect. 8.

– PLC-Automata A special extension of automata having
formal temporal semantics defined with duration calcu-
lus. PLC-Automata [24] can be transformed directly to
PLC executable code.

– Timed Automata Timed Automata [2] is originally a for-
mal modelling methodology that is frequently used in
model checking purposes. Instead of transforming the
PLC software model to a model checking formalism,
directly modelling the system using Timed Automata is
preferred in a few studies.

– ConditionEvent SystemsCondition/event system [104] is
a discrete state formalism developed for modelling dis-
crete event systems. It inherits functionality from Petri
nets and can be directly model checked. Temporal vari-
ants of this approach are also used in some studies.

– Unified Modelling Languages Unified Modelling Lan-
guage [97], originally developed tomodel object-oriented
software intensive systems, is later extended to state chart

models. This modelling approach is frequently used in
modelling PLC software, and it has been used for model
checking purpose as well in a couple of studies.

– MATLAB State charts Different adoptions of state charts
[48] are present today, UML state charts and MATLAB
state charts being widely used two adoptions. MATLAB
state charts are used in conjunctionwith SimulinkDesign
Verifier for PLC program verification.

In addition to those approaches directly applied in rela-
tion to PLC program verification purposes, there also exist a
number of studieswhere researchers use their own PLCmod-
elling approach or their own model checker tools in order
to contribute to the challenges faced by the practitioners of
the approaches listed above. Some of them combined differ-
ent techniques listed above to gain advantage from strengths
of each approach. There also exist some studies [22,23,50]
where the approach is not directly related to PLC model
checking, but the process or the outcome can be used in such
purposes; therefore, we chose to mention them as well at the
end of Sect. 8.

4 Research methodology and classification of practices

4.1 Previous surveys

Before examining in detail the model checking studies per-
formed on PLC program verification, we would like to
explain the research methodology we have followed for the
research and review process of the papers we have included
in the survey. We have started the research process with a
few studies that perform a similar survey in the past about
verification of PLC programs or alike.

In the study by Frey and Litz, verification and validation
activities on PLC programming is discussed over a generic
control design process model proposed by the authors [37].
In their study, they analyzed the integration process of for-
mal methods in PLC programming and discussed various
practices in different stages of this iteration process. Later,
they classified the verification approaches, formalisms used,
and methods applied during the integration process. Model
checking was one of the methods in this classification among
theorem proving, reachability analysis, and simulation.

Later, the dissertation by Huuck [54] contains a survey
of model checking studies applied on PLC programs. His
study focuses on developing formal approaches on PLC pro-
grams specified in ILandSFCandproposes amodel checking
approach based on translating SFCs to CadanceSMV mod-
els. In his study, Huuck also provided a discussion of model
checking approaches for PLC programming. In his discus-
sion, it can be seen that most of the studies in the area are
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performed over IL models and a few studies exist on other
programming approaches at the time.

Finally, the study by Younis and Frey [116] provides a
classification scheme for the works done in formalization
of existing PLC programs. They classified the studies based
on four criteria: sources used for the formalization, level of
formalization, aim of formalization, and the formal model
used to describe the PLC program. Although their discussion
mostly include model checker formalisms as the targets of
PLCprogram translation, they alsomention a fewapproaches
on static analysis and reverse engineering as well. Our study
can be seen as updating and expanding their study.

The latest survey presented above is dated back to 2003;
during the last decade, practices on model checking has
evolved in a noticeable manner especially in the area of FBD
translation. Earlier studies focus on verifying textual PLC
programs or LDs where only boolean variables are used.
Beginning from 2000s FBDs started to take over due to their
more modular structure, ability to handle complicated pro-
grams more easily and availability of different types of vari-
ables.

Additionally, model checking tools are being continu-
ously improved as well, most of the model checking tools
have improved their efficiency and published new releases
of their software. Moreover, the computing capabilities of
hardware is also continuously increasing so it became possi-
ble to model check many complicated systems, which were
not suitable for model checking before. An obvious exam-
ple is the increase in studies aiming toward verification of
real-time properties. Three quarters of the number of Timed
Automata-based verification studies included in our surveys
are performed after 2003.

Handling larger programs is another improvement that
can be seen in latest studies. Even though the system sizes
were beingmeasured in terms of variables instead of function
blocks in earlier days, latest studies report an improvement
of a hundred times in larger sized systems. Comparisons in
latter parts of our study show that FBD-based verification
studies are now able to handle thousands of variables where
the numbers were less than a hundred for the studies per-
formed using LDs.

4.2 Research methodology

During our research process, we have used the surveys
reviewed above as basis together with some very early stud-
ies published on the subject like the paper by Halbwachs
et al. [45] and Moon et al. [84]. We have built our initial
paper base by including all the papers reviewed by the sur-
veys above and the early studies mentioned.We have applied
a number of iterations by following the steps below until we
were sure that the paper base is not expanding anymore.

1. Widely known electronic library resources (ACMDigital
Library, Elsevier Science Direct, IEEE Explore, Springer
Link and Wiley Online Library) are searched for the
related papers cited by the papers in our paper base.

2. Widely known academic indexing sites (Citeseer, DBLP,
Google Scholar,Microsoft Academic Search) are search-
ed for the papers that cite the papers in our paper base.

3. Full range of academic studies of the authors that are
present in our paper base is skimmed.

4. Mostly used keywords in our paper base (PLC, Model
Checking, LTL, FBD, etc.) are searched in electronic
library resources.

5. International Federation of Automatic Control’s events
and publications is directly searched.

After each iteration of the steps above, we applied a pre-
liminary review and included the appropriate papers to our
paper base. We keep track of both included and excluded
papers to our paper base in order to rapidly eliminate any
sort of duplicate reviews. At the end of our iterations, we
have used the following criteria to be included in the detailed
review process

– Studies that use a present model checking tool in verifi-
cation of PLC software like SMV and UPPAAL.

– Studies that the authors have developed their own model
checkers in the verification of PLC software

– Studies that apply model checking on the PLC software
developed by the programming languages included in the
IEC 61131 standard.

– Studies that use modelling languages (Petri nets, UML,
etc.) in representing PLC software.

Following criteria are used to exclude papers from the
paper base:

– Studies that use formal methods other than model check-
ing like theorem proving.

– Studies that focus on test case generation, state reduction,
and specification representation even though wemention
and cite them whenever needed.

At the end of our review process, we have reviewed 78
papers where 54 of the papers were included in the pro-
ceedings of related symposia, conferences, and workshops;
16 of the papers were published in journals and the rest
of the papers were technical reports, MSc/PhD thesis, and
books. Interestingly, all of the journal articles included in
our survey has been published in a separate journal. A more
coarse-grained clustering can be done by the publishers of
the journals where IEEE journals has the lead by five differ-
ent journals. Even though the conference proceeding papers
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are more concentrated than journals, there are still 34 dis-
tinct conferences for the papers covered in our study. IEEE
conferences cover a total of 31 papers published in the area;
among those, IEEE Conference on Emerging Technologies
and Factory Automation proceedings contains 6 of the cov-
ered papers, followed by IEEE International Conference on
Systems, Man, and Cybernetics contains 5 of the covered
papers. Another notable clustering is in IFAC conferences,
where 4 different conference proceedings contain 5 papers
covered in this survey.

4.3 Classification of practices

In this section, we present our main classification discussion
on the studies that we are going to examine in more detail.
Before presenting our main classification, we would like to
mention the main model checking approaches and tools used
in the studies that will be discussed. Briefly, three main set
of tools used in a wide range of studies, which are

– SMV-based tools, which include NuSMV [17] and
CadenceSMV [80]. Symbolic model checking tech-
niques and binary decision diagrams [79] are applied
in SMV-based tools. Those tools can verify proper-
ties written in both LTL and Computation Tree Logic
(CTL).

– Timed Automata-based tools, which is mostly from
UPPAAL family [69] or Kronos [117] in a few studies.
Timed Automata is an extension of automata with a set
of real-valued clocks. These clocks are actually positive
integers that increase monotonically and in a synchro-
nous way during automata run. Timed Automata-based
tools are used to perform model checking on real-time
system models and allow specifications in Timed CTL.

– SPIN model checker. SPIN is one of the major model
checkers where the program models are expressed in
Promela language and converted by SPIN to programs
in C language to verify properties written in LTL.

Apart from those model checkers, there are also studies
performed using model checker Tina [9] or authors’ own
model checker implementations.

Our main classification approach is examining the stud-
ies by the PLC programming or modelling language being
used as the source for translation to the model checkers mod-
elling formalism.As explained in the former section, we have
used a similar taxonomy presented in the IEC 61131 standard
with the only exception of widely used Petri nets examined in
addition to SFC-based models. A diagrammatic representa-
tion of the taxonomy we use in our classification is presented
in Fig. 7.

Second criterion in our main classification is the target
model checking formalism and specific model checking tool

Fig. 7 Main classification of PLC programs used in classifications

used. In Tables 1 and 2, we present a matrix of all the studies
we have examined, grouped in rows of the matrix accord-
ing to their PLC programming/modelling approaches and
grouped in columns of the matrix according to the kind of
model checking formalism they use.

In Table 1, examined studies are classified according to the
programming language and the model checking tool used in
the study. It can be seen that the mainstream model checking
tool used in the studies is SMV followed by UPPAAL. The
main difference between these tools is the real-time model
checking capability offered by UPPAAL where real-time
clocks can be included in themodel. On the other hand, SMV
allows model checking timed properties implicitly. In SMV,
temporal properties can be expressed (using temporal logics)
by referring to an implicit “current time,” and the properties
are specified relying on the ordering of events with respect
to the current time. The studies that contain model checking
real-time properties using UPPAAL include heavier discus-
sion of abstraction and state space reduction compared to
SMV-based studies.

In two of the Timed Automata studies, Kronos is used
(indicated with “K” superscript) rather than UPPAAL. How-
ever, both of these studies are rather outdated, which can be
interpreted as UPPAAL dominating the timed model check-
ing studies in PLC model checking. For SMV, a more bal-
anced distribution of choices is present between NuSMV
and Cadence SMV both in terms of numbers and recentness.
There are also earlier studies using earlier versions of SMV
model checker based on binary decision diagrams.

Apart from these two mainstream model checkers, there
are also studies that use Promela/SPIN, Tina, and othermodel
checking tools, mostly authors’ own implementations. In
Table 1, studies that use SPIN are indicated with an “S”
superscript and studies that use Tina are indicated with “T”
superscript. Most of the SPIN-based studies are performed
around year 2000 where the two Tina-based studies are rel-
atively more recent compared to SPIN-based studies.

An interesting comment on Table 1 can be the excessive
use of FBDs in recent studies.All of the studies that use FBDs
are performed after 2007, and a great portion of these stud-
ies are performed after 2010. On the other hand, sequential
function charts were mostly used between 2000 and 2005,
they seem to be not preferred for more recent model check-
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Table 1 A general classification of studies performed in model checking PLC programs

Timed Auto. SMV SPINS, TinaT and Others

UPPAAL and KronosK SMV NuSMV CadenceSMV

Textual Programs [113,118] [41,90] [16] [77]S, [5,10,100]

Function Block Diagrams [20,29,30,103] [87,89] [57,59,115] [5]

Ladder Diagrams [83,99,119] [94,101,106] [96] [8]T, [33] T, [5,84]

Sequential Function Charts [75] K, [7] [12,19,39] [6,7,55] [14] S, [77] S, [5]

Petri nets [81] [38,42–44] [40,63,112] [36]

Table 2 Classification of
studies performed using
nonstandard tools or languages

Timed Automata SMV Others

PLC-Automata [26,86]

Timed Automata [67,109,114]

Condition/event systems [95] [47,66,108]

State machines [98] [64]

CFCs [110]

Simulink and data/state
flowcharts

[60,78]

Other [107] (REMES) [45] (LUSTRE), [105] (tMPSG) [111]S (VKRC)

Fig. 8 Properties used in the classification of PLC program verification studies

ing studies. Another interesting point is the lack of Timed
Automata studies using Petri nets. The capability of mod-
elling timed properties using Petri nets explicitly can be the
reason for the lack of such translations, the authors choose
to either use Petri nets or Timed Automata when real-time
modelling is needed.

In Table 2, we present a similar classification for the
studies that do not use IEC 61131-3 standard programming
languages or Petri nets. A considerable amount of stud-
ies exist that use a modelling language derived from finite
state automata such as PLC-Automata and Timed Automata.
Other approaches include data and state flowcharts and event
systems where more recent studies are focused. Simulink is
used in a couple of studies to perform verification using the
built-in verifier. Timed automata is used more than SMV
when nonstandard languages are considered, because most

of the time used modelling language is automata or state
transition-based making it easier to transform into Timed
Automata models.

Both these tables are presented to give a brief overview
of the relationship between the model checkers and the pro-
gramming languages used in model checking PLC systems.
In the following sections, we elaborate our overview by dis-
cussing the mentioned approaches above and making com-
parisons when possible.

In our classifications, we use five main properties of per-
formed studies explained below to make a clear distinction
among the individual studies. A graphical representation of
the classified properties is also presented in Fig. 8.

1. Application areaTheusage area of thePLCsystemwhere
the model checking is performed upon is identified with
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this class. It can be interesting to check whether any
relationships exist between certain usage areas and spe-
cific tools/techniques like the classic example of railway
crossings and Timed Automata.

2. System Size The unit used in system size can change
according to the PLCprogramming language in the study.
For instance, for textual programs, the system size can be
defined as the lines of program while for FBDs, it can be
the number of function blocks in the systemmodel. Some
studies prefer to provide the size of the state space during
themodel checking process; however, this number can be
subjective, because of the modelling tool and state space
reductions used.

3. Performance The time spend during model checking
process. We prefer to use a broad unit of measure for per-
formance since the performance can change according
to the system size and hardware used in model check-
ing. We simply use “seconds,” “minutes,” or “hours” to
indicate an approximate duration.

4. Automation Level We separate the studies that perform
fully automatic process in converting the PLC program
models to model checker’s models. We present three
classes of automation “automatic,” “manual,” and “semi-
automatic” where in semiautomatic conversions addi-
tional interventions are performed over automatic con-
versions either to perform abstraction of small modifica-
tions.

5. Formal Specification Specification of the properties to
be verified using a temporal specification language (LTL,
CTL, TCTL, etc.) are also performed in an automaticway
in someof the examined studies.Wemake adistinctionby
providing “automatic,” “manual,” and “semiautomatic”
classes.

We have also included an additional comparison about
the kind of properties that has been verified in the studies.
Although the properties that were checked can be intuitively
guessed from the type of model checking tool used in each
study, some studies do not fully utilize the capabilities of the
tools they use. A typical example is to use TimedAutomata in
modelling the system and not to include any timed properties
in the specifications that are checked. Our comparison tables
contain the following three types of data.

1. Real-time properties: This column is used to indicate
whether any timed properties have been verified in the
study.

2. Correctness properties: The property to be verified can
either be an invariant that is used to verify regular correct-
ness properties (indicated with capital I) or the property
can be a safety property ensuring that an unwanted situa-
tion never happens (indicated with capital S) or it can be

a liveness property ensuring the continuous execution of
the system (indicated with capital L).

3. Specification logic: This column contains the temporal
logic used in specification.

It should be noted that the properties above are indicated
in the classification based on explicit examples in the paper
instead of author claims.

5 Model checking textual PLC programs

Textual PLC programs are the means of PLC programming
practices where we exhibit the earliest studies in formaliza-
tion for model checking. This is quite natural, because text-
based programs were being used earlier than FBDs and pars-
ing them is more straightforward than LDs. One of the most
prominent challenges in model checking textual PLC pro-
grams is reflecting timer on-delay instruction (TON) type of
timers used in PLC programs for the purpose of ensuring the
real-time properties. Basically, TON instructions are used to
present a delay mechanism for their input signals. A TON’s
true input is reflected to its output only if the input signal is
stable for a constant amount of time specified by the PLC
programmer.

Also being one of the earlier studies in the area Mader
and Wupper [76] study on transforming IL programs to
Timed Automata models. They discussed the problem of
TON timers and proposed two solutions: the first solution
is using IL to program TON blocks and the counterpart is
using automata to model TONs in the program. They indi-
cated that it is more preferable to adopt the second approach
since it is more modular and simpler. However, in the future
work by Mader et al. [77], they have chosen to use Promela
models instead of Timed Automata when performing model
checking on an industrial case study. Interestingly, this study
is also one of the few studies where SPIN is used in PLC
program verification rather than SMV or UPPAAL.

Almost during the same years, Willems studies a similar
TON problem and came up with a similar solution where he
used Timed Automata to model TONs in the system [113].
Moreover, he has dealt with Zenoness issues that may arise
and proposed solutions for such problems. Willems was able
to reduce the state space size between 5-fold and 30-fold
in his studies using Caesar/Aldebaran Development Package
for performing state reduction on the produced models.

One of the latest studies that deal with the TON problem
by using Timed Automata as well is by Zhou et al. [118]
where the authors claim they have expanded Willem’s work.
In their study, Zhou et al. used four different modules namely
“Coordinator” tomodel PLC synchronization, “Program” for
PLC program, “Environment” for I/O, and “Interruption” to
model time-based interruptions. Even though the first three
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Table 3 A classification of
studies performed with textual
PLC programs

App. area Syst. size Performance Auto. level Formal spec.

[113] N/A 18 lines N/A Automatic N/A

[16] Tool changing 89 lines N/A Automatic Manual

[77] Batch plant N/A Minutes Manual Manual

[41] N/A 4000 vars Seconds Automatic N/A

[90] Counter N/A Minutes–hours Semiauto. Manual

[100] Counter N/A Seconds Automatic Manual

[118] N/A N/A N/A Automatic Manual

modules are conventionally present in most of the studies in
this area, interruption module is specific to this study.

Timed Automata is not the only formalism used in IL
model checking. There are two studies that utilize SMVmod-
els in order to model check IL programs as well. The earlier
study by Canet et al. [16] deals with single smaller modules
and does not consider the timers during their studies. On the
other hand, Pavlovic et al. [90] include interesting discus-
sions in their study where they provide a meta description
of the IL language to their translation process to be able to
adapt the possible modifications in IL standard in the future.
Their discussion also references a method by Peleska and
Haxthausen [91] to check the behavioral equivalence of their
formal models with the original PLC program. They also use
SMV as the model checking formalism.

Another important commonality in textual program trans-
formation studies is the dominant usage of IL over ST. Most
of the papers below use mainly IL and some of them use ST
programs secondarily in the transformation process. Gour-
cuff et al. use ST and perform dependency analysis between
the variables in the program before transforming the program
to SMV models [41]. They have also compared their results
with DeSmet et al.’s study [101] where the results show sig-
nificant improvement.

Lastly, we would like to mention Schlich et al.’s study
where IL programs are model checked directly without using
any conventional formalism [100]. They have used “con-
crete” and “abstract” simulators to generate state spaces from
IL programs where concrete simulators generate state(s) for
eachPLCcycle.On the other hand, abstract simulators aggre-
gate suitable states to reduce the state space. Their results
show that the same example in Pavlovic et al.’s study [90]
can be checked in 6 s where in Pavlovic’s work process was
taking 8 h. They also compare their work with another study
by Huuck [55] and show significant improvements as well.

Examining Tables 3 and 4,1 we see that the studies that
explicitly state the size of the system (in terms of number of
lines) do not consider the performance of the model checker.
Conversely, the system size is not mentioned for the studies
that mention the system performance. Nevertheless, it can be

1 Papers that do not include explicit information were omitted.

Table 4 Properties checked when model checking textual PLC pro-
grams

Real time Correctness Spec. logic

Invariance Safety Liveness

[16] No Yes Yes Yes LTL

[77] No Yes No No LTL

[100] No Yes No No CTL

[118] Yes Yes No No CTL

inferred from the results that model checking is performed
in acceptable times for most of the studies. Model checking
a 90-line program may not seem large enough for realistic
systems; however, undersized experiments are unavoidably
common for the model checking case. An automatic transla-
tion between PLC program and model checker’s input lan-
guage is performed most of the time due to the ease of pars-
ing textual programs. On the other hand, none of the studies
mention automatic generation of specifications to be checked
compared to a few studies present for other programming
models. Even though the reason behind this situation can be
the low-level nature of textual representations that does not
contain any abstractions, automatic specification extraction
area seems to be an open area for this field of study.

Among all the studies discussed above, Willems et al.’s
study andZhou et al.’s study are the only ones that used timed
models in model checking process distinguishing them from
other studies. These studies can handle simpler programs
compared to the more recent studies by Pavlovic et. al’s and
Schlih et al.’s studies being able to handle much larger state
spaces. Lastly, we would like to mention Mader et al.’s study
including very detailed examples on a practical case study.

6 Model checking graphical PLC programs

6.1 FBD programs

The most recent studies on model checking PLC programs
are performed on FBD programs; almost all of the studies
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Table 5 A classification of
studies performed with FBDs App. area Syst. size Performance Auto. level Formal spec.

[59] Nuclear plant 16 blocks 7 vars N/A Semiauto. N/A

[20] Hydrogen gen. Unit 19 blocks 12 vars N/A Automatic N/A

[115] Nuclear plant 1,500 blocks 1,000 vars N/A Automatic Manual

[89] Railway interlock 100 vars Minutes Automatic Manual

[103] Safety app. 6 blocks N/A Automatic N/A

[29,30] Train control 30 blocks <1 s Automatic Automatic

[57] Nuclear plant 20,000 blocks 9,000 vars N/A Automatic N/A

[87] N/A N/A N/A Manual Manual

examined below belong to the last 5 years, which point to
FBDs being the most recently used means of PLC program
verification in this context.When it comes tomodel checking,
formalisms studies almost split in half in using either SMV
or UPPAAL models.

The work of Jee et al., Jeon et al., and Yoo et al. all focuses
on model checking a PLC program of a nuclear power plant
control system by using Verilog models and CadenceSMV
for the model checking process. Again, common to all stud-
ies, a rule-based engine is used in performing translations.
Jeon et al.’s and Jee et al.’s study specifically focuses on pro-
ducing more understandable counterexamples [57,59] since
the output of their tool produces tables of values for all
the variables in the system. To provide a consistent trans-
lations from FBDs to model checker’s language, both stud-
ies required assumptions on FBD programs like predefined
execution orders and type safety. On the other hand, Yoo et
al. [115] use VIS verification technique [13] to check the
conformance of behaviors between their FBDs and Verilog
models.

Pavlovic and Ehrich [89] use their own intermediate for-
mat, which they call tFBD after they transform their FBD
program into a text-based representation they call textFBD.
By defining operational semantics of textFBD format isomor-
phic to FBD semantics, they assure the equivalency between
models in their translation process. They claim that their
tFBD format, which is based on compacting textFBD to
propositional logic formulae, dramatically reduces the state
space during the model checking process realized with SMV.
The compaction process combines chains of assignments
(which is frequently present in FBDs) into single assign-
ments reducing the amount of variables (especially tempo-
rary variables) used in tFBD’s logic formulae. They apply
their method in the area of railway automation to a small and
a more general case study and report that the state space is
reduced in a dramatic way from 1065 states to 1014 states for
one of their examples.

Pakonen et al. also work on translating FBD programs to
SMVmodels for verification purposes; their work is focused
on generating an Eclipse-based tool, which does not per-

Table 6 Properties checked when model checking FBD-based PLC
programs

Real time Correctness Spec. logic

Invariance Safety Liveness

[89] No No Yes No CTL

[29,30] No Yes Yes No CTL

[57] No Yes Yes No N/A

form automatic transformations but provide vendor indepen-
dence [87].

One of the studies which use UPPAAL and Timed
Automata for model checking is the work by Soliman et al.
where a rule-based transformation engine is used to transform
safety function blocks, connections, inputs, and triggers in an
FBD separately into Timed Automata models [103]. Unfor-
tunately, their paper does not contain a detailed evaluation
on the effectiveness of their work.

Two studies we have included in this comparison focus
on generating test suites using the model checking tool
UPPAAL to be used in PLC testing. Even though authors do
not directly apply model checking, their approach can influ-
ence researchers and practitioners working in model check-
ing PLC programs. The first study in this particular area is
performed by Enoiu et al. [29,30] where they were able to
generate 40–50 state test suites in less than a second from
30 FBD PLC programs. Another study by Silva et al. also
focuses on test generation from standard FBD programs [20]
by generating a synchronization automaton to represent PLC
cycles and a behavior automaton for each FBD.

Tables 5 and 62 summarizes the important aspects about
the model checking studies on FBD programs. Translation
from FBD to model checker language is done automatically
formost of the cases. Verification of systems up to the level of
thousand blocks was possible even though the time required
for verifications is not explicitly included in most of the stud-
ies.

2 Papers that do not include explicit information were omitted.
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6.2 LD programs

A wide range of studies exist for model checking LD pro-
grams spanning over SMV and UPPAAL models as well as
Tina model checker. LD program-based studies span over
time as well, there exists very early studies that utilize LDs
as well as recent studies. For the case of LD model check-
ing, the most recent studies generally use UPPAAL where
earlier studies chose to use SMV variants to perform model
checking.

Very early studies by Turk et al. and Probst et al. both
use NuSMV as model checker and also they both use relay
logic ladders, the early versions of LDs. Turk et al. [106]
discussed the main challenge as transforming to the implicit
time domain present in SMV where Probst et al. [94] handle
the issue by modelling the hardware and nondeterministic
human behavior separately to produce more realistic inputs
during model checking process.

A more recent study by Smet and Rossi [101] uses a
Python-based parser to transform each rung in LDs to a sepa-
rate SMV model while the main challenge is to conserve the
connections between the rungs among SMV models. Even
though the details of the transformation process are not pro-
vided, a considerable amount of discussion is provided on
specifying temporal properties of the system. By using their
system, theywere able tomodel check three different systems
having between 27K and 16M states during model checking.
The model checking process is performed between 1 s and 4
and a half hours, respectively.

Rossi et al. [96] have used CadenceSMV as a tool and
translated text representation of LDs using a 6 ruled trans-
formation engine.Although the paper does not contain a clear
evaluation of the approach, they focus on TON semantics and
how they can be handled in a large context.

Zoubek and Schnoebelen [119] also focused on TONs in
their paper, but they chose Timed Automata and UPPAAL
for model checking. Conventionally, they model the user
input, the program behavior, and the PLC cycle separately,
but their transformation works on a total of seven different
instructions. An important contribution of their work is to use
program slicing in reducing the state space of the produced
system. They also provide additional manual abstractions to
further shrink the state space. As a result of their studies, they
were able to reduce themodel checking duration of their case
study to a few minutes, which normally took unmanageable
amount of time.

UPPAAL is also used by Sarmento et al. [99] in their stud-
ies, but the models do not include explicit time properties.
They use a finite state intermediate model, which contains
integer andBoolean variable annotated transitions. They pro-
vide a seven-step modelling procedure for their methodol-
ogy; however, their discussions do not include any aspect
about automation of their process. Recently, in Mokadem

et al.’s study [83] on multitasking, PLCs are model checked
using Mader–Wupper model [76] with further manual modi-
fications as an intermediate model to effectively handle TON
timers and reduce state space.

Specific toLDmodel checking, two studies have usedTina
as model checker. In Bender et al.’s study [8], a model-driven
approach is applied by using ATL [62] transformations over
LDs to produce timed Petri nets, which then can be automat-
ically transformed to Tina models. A rule-based translation
is used in LD translation, and race conditions are handled by
checking whether the stabilizing inputs yield to stable out-
puts. The stability of the output variables is checked by using
two timed Petri net places for each variable’s true and false
state, respectively. Absence of race conditions is checked by
observing stabilized outputs as a result of stabilized inputs.
Authors claim theywere able to reduce the state space of a six
actuator seven sensor system from7million states to 40 states
using Tina. A later study with Tina is carried out by Farines
et al. [33] where a model-driven engineering approach is
used in the transformation of LDs to an intermediate form of
FIACRE platform (a timed transition system in particular).
Their work is very similar to Bender et al.’s work except the
intermediate format they use.

Lastly, it is worth to mention James et al.’s study [56]
where LDs are utilized to produce LTL formulas to be used in
model checking. Inmost of the studies examined in this paper,
such specifications are produced manually, which makes this
study more valuable.

Model checking LD programs are applicable on systems
having less than 100 variables as the Table 7 depicts. For
most of the studies, the process was completed in an order of
minutes while automatic translation is performed in around
half of the studies. In the study by Bender et al. [8], perfor-
mance was discussed over the size of the Petri net model,
which is used as an intermediate format so it was considered
likewise in the comparison table as well. In Table 8, we can
see that most of the studies include explicit examples of the
properties (especially safety properties) that were checked.
Most of the time, CTL is used as a specification language, a
few studies verify timed properties and use TCTL.

7 Model checking PLC program models

7.1 SFC models

Active research on using SFC models for model checking
purposes mostly fall between 2000 and 2005. Even though
SMVmodels have been the primary focus in SFC translation
studies, there also exists work using Timed Automata in the
process.

An early work by L’Her et al. [75] uses Kronos tool for
model checking process by inferring temporal properties of
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Table 7 A classification of
studies performed with LDs App. area Syst. size Performance Auto. level Formal spec.

[94] Screw conveyor 74–93 vars Minutes Semiauto. Manual

[106] Chemical plant 24–93 vars Minutes Manual Manual

[96] N/A N/A N/A Automatic Manual

[101] Machining line 30 vars Seconds–hours Automatic Manual

[119] Pumping line 39 vars Minutes Semiauto. Manual

[8] N/A 23–31 places N/A Automatic Automatic

[99] Gas burning equipment N/A N/A Manual Manual

[83] Pinion identifier N/A Seconds Manual Manual

[33] Pneumatic N/A Seconds Automatic Manual

Table 8 Properties checked when model checking LD-based PLC pro-
grams

Real time Correctness Spec. logic

Invariance Safety Liveness

[94] No Yes Yes Yes CTL

[106] No Yes Yes Yes CTL

[96] No Yes Yes Yes CTL

[101] No Yes Yes Yes CTL

[119] Yes Yes Yes No TCTL

[8] No Yes Yes No LTL

[99] No Yes Yes No CTL

[83] Yes Yes Yes Yes TCTL

[33] No No Yes No CTL

[56] No Yes Yes No Lustre

SFC diagrams. In their paper, authors examine the corre-
sponding elements in Timed Automata models for sets of
activities that can be present in SFC diagrams. They apply
their approach on an 8-state SFC, but the resulting model
could not be checked by Kronos since it includes 250K tran-
sitions, way too much for Kronos to check. They were able
to reduce the state space to around 100 transitions by adding
constraints on the translation process and by eliminating
unnecessary variables in SFC states.

Couffin and Lesage [19] have performed translations to
SMV models by expressing the behavior in SFC steps using
propositional logic formulae. These formulae are later used
in building state transition conditions of the automata in SMV
models. The largest state space checked by the authors con-
tains 106 states, taking 4 s to be model checked. Citing this
work, a paper by Smet et al. [102] also mentions SFC-based
model checking and summarizes the research group’s many
PLC model checking studies in their paper.

The study by Fujino et al. [39] mainly performs simu-
lations on Petri net models translated from SFC diagrams.
They also claim they were able to easily convert Petri net

models into SMV models and perform model checking, but
did not include a detailed evaluation of this process. Many
different techniques are used in combination by Brinksma
et al. [14], where they perform translation from SFC and
IL initially to SPIN models and perform state reduction by
selecting states belong to cost optimal schedules generated
using UPPAAL CORA. Another study by Bornot et al. [12]
focuses on the reachability properties of SFC steps and did
not include output variables in their SMV models in this
respect .

CadanceSMV was commonly used in more recent stud-
ies on SFC model verification. Bauer et al., in two differ-
ent studies, have verified nuclear power plant control pro-
grams [6,7]. In the earlier study, they have used variables
to represent actions while in the latter one they were able to
use automata for this purpose. Their main challenge in the
second study was eliminating malformed sequences in SFC
sequences, which they perform by searching for predefined
subgraphs in the graphs generated from SFC models. They
were able to model check a model with 40 different automata
in about 15 min.

Finally, Huuck et al. [55] try to identify unsafe and
unreachable states in SFC models. They use model checking
to search for some rules that violate safeness of the model,
which can be done by reachability analysis in state space gen-
erated by model checking. They claim they obtain successful
results even for large SFCs, but did not explicitly include how
large the checked SFC were.

Table 9 compares the studies on SFC programs where
model checking was feasible at around ten states. For two of
the studies, themodel checkingwas evaluated using the num-
ber of states generated during the model checking process
indicated with transition system (TS) states. The level of
automation is above average in SFC-based studies as well,
where most of the studies perform at least a semiautomatic
translationwhere abstractions are applied after the automated
translation process. In Table 10, we can see that in model
checking SFC-based programs, generally CTL is used. An
interesting fact is none of the studies onmodel checking SFC
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Table 9 A classification of
studies performed with SFCs App. area System size Performance Auto. level Formal spec.

[75] Production Cell 7 SFC states N/A Semiauto. Semiauto.

[12] N/A 8 SFC states N/A Automatic Manual

[14] Batch plant 24 SFC states seconds Manual N/A

[39] Cooling and alarm 4–8 SFC states N/A Semiauto. Manual

[19] Manufacturing 106 TS states Seconds Semiauto. Manual

[6] Chemical plant 14 SFC states Seconds Automatic Manual

[55] N/A N/A Seconds Automatic Manual

[7] Chemical plant 14 SFC states Minutes Automatic Manual

Table 10 Properties checked when model checking SFC-based PLC
programs

Real time Correctness Spec. logic

Invariance Safety Liveness

[75] No No Yes No CTL

[14] No Yes No Yes LTL

[12] No Yes Yes Yes CTL

[102] No Yes Yes Yes LTL

[39] No Yes No No CTL

[19] No Yes No No CTL

[6] No Yes Yes Yes CTL

[55] No Yes Yes No CTL

[7] No Yes Yes Yes CTL

programs verify real-time properties, although SFC models
inherently involve parallelism.

7.2 Petri net models

There exists a huge number of studies on model checking
Petri nets in the literature not only focusing PLC program
models but also embedded systems, and many other areas
where Petri nets are used.Wewill be focusing on the ones that
explicitly mention the area of application as PLC program
verification in our discussions.

Earlier studies also discuss how Petri nets can be used in
PLC program modelling purposes. For instance, in Frey and
Litz’s work [36], the usage of signal interpreteds Petri nets
(SIPN) in control systems and the usage of their verifica-
tion tool Netmate on a dissolving tank example are demon-
strated. In a later study of Frey on SIPNs, he utilizes hSIPN
(hybrid SIPN) to be able to fold states of Petri nets and
presents analysis on such models [35]. Frey andWagner [38]
apply model checking in a later short paper by presenting
a multipurpose PLC programming toolbox. In SIPN tool-
box, the capability of exporting to NuSMV models is also
present.

In this area, Frey has also co-authored many other papers.
In Mertke and Frey’s work [81], an extensive study of mod-
elling PLC programs and the behavior of the environment is
performed. They have combined Petri net model of the PLC
and the environment to perform a complete model checking
practice. Moreover, they also transform the timed require-
ments to be checked from a German semiverbal presenta-
tion, which is not frequently performed for the studies in
PLC model checking.

The work of Weng et al. contains formalization of Petri
net places. Inputs and outputs to CadanceSMVmodels [112]
are discussed on the control system of an air chamber. In
their study, Klein et al. adopt hSIPN approach [35] and
perform CadanceSMV transformation with the approach in
Weng’s study on the verification of a manufacturing sys-
tem [63]. They also transform SIPN models to SFC models
and remodel check to validate their approach.

Apart fromFrey et al.’swork, an earlier study is performed
by Heiner et al. where Petri nets are not used in directly
modelling PLC programs but as an intermediate format to be
generated from IL program [51]. However, their study only
includes this translation process, model checking practice
is left as a future work. On the contrary, a recent study by
Gergely et al. [40] performs translation to SMVmodels man-
ually, but discusses the model checking process and focuses
on the specification of the properties with CTL.

In a series of studies byGrobelna et al., control interpreted
Petri nets are transformed to a rule-based textual intermediate
format called logical models and transformed to NuSMV
models by a rule-based translation engine [42–44]. Lastly,
Nemeth et al. translate FBDs to colored Petri nets to use
them as intermediate formats in model checking a nuclear
power plant’s control system [85].

Interestingly, in none of the studies, we have discussed a
sound performance evaluation is present for Petri net-based
model checking as shown in Table 11. This situation drives
us to assume that Petri nets with around 5–20 places can be
model checked in applicable durations. A single study where
a Petri net with around 50 states was model checked was
performed by Klein et al. [63]; however, the authors state in
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Table 11 A classification of
studies performed with Petri
nets

App. area Syst. size Performance Auto. level Formal spec.

[36] Dissolv. tank 6 places N/A N/A N/A

[112] Air chamber 5 places N/A N/A Manual

[81] Air chamber 5 places N/A Automatic Automatic

[63] Manufact. 55 places N/A Automatic Manual

[38] N/A N/A N/A Automatic Semiauto.

[40] Mixing tank 5 places N/A Manual Manual

[42,44] Fluid mixture 9 places N/A Manual Manual

[43] Drink prod. 20 places N/A Automatic Manual

Table 12 Properties checked when model checking Petri net PLC pro-
gram models

Real time Correctness Spec. logic

Invariance Safety Liveness

[81] No Yes Yes Yes CTL

[112] No Yes Yes No CTL

[63] No Yes Yes No LTL

[40] No Yes Yes Yes CTL

[42,44] No Yes Yes No CTL

[43] No Yes Yes Yes CTL

their work that additional abstractions can be necessarywhen
transforming fromPetri nets toPLCmodels. These additional
abstractions are applied by compacting repeated structures
inside the Petri net into a single place. Table 123 contains
similar results to the SFC property verification results, none
of the studies explicitly include verification of real-time prop-
erties and most of them use CTL as specification logic.

8 Other approaches that use model checking

In spite of the large number of studies using IEC 61131 stan-
dards, PLCmodel checking is not limited to translation from
standard PLC programming languages and modelling lan-
guages to a limited set of model checking tools. There also
exists a large number of studies using a variety of different
formats/tools to make the approach more effective and easy
to apply for the community. Additionally, exploring the state
space of PLC programs is not limited to model checking,
it can also be used to generate a wide range of test cases,
inspiring a number of academic research in the area.

PLC-Automata are a specific type of automata, which
can define machines that periodically polls inputs and oper-
ate on them [25]. Formal semantics of PLC-Automata has
been defined in duration calculus, and such automata can

3 Papers that do not include explicit information were omitted.

be directly translated to PLC programs. Dierks et al. per-
formed translation from PLC-Automata to Timed Automata
models and validate their translation by verifying the same
set of properties with duration calculus and translated Timed
Automata [26]. They have used Kronos and UPPAAL for
model checking and show that model checking is viable for
tiny and small systems. Olderog et al. transformed constraint
diagramsobtained fromuser specifications toPLC-Automata
and use PLC-Automata as an intermediate format [86].
Model checking PLC-Automata is performed by translating
PLC-Automata models into Timed Automata models using
Moby/PLC, a tool developed by Dierks and Tapken [27].

There also exist some other studies that use directly mod-
elling PLC and its environment using Timed Automata. For
instance, Wang et al. [109] used UPPAAL to model check
a controller that control the motions of a theater steeve that
lights, screen, and curtains are adorned to.Witsch et al. [114]
performed a similar study by modelling PLC-based ethernet
controllers directly using Timed Automata. Another study is
by Lahtinen [67] where he checked an arc protection control
system modelled in Timed Automata. He presents a satisfy-
ing evaluation of the Timed Automata models and memory
consumption/model checking time. Even though these stud-
ies’ subjects are PLCs and they use model checking, they
did not perform a full integration of formal methods to their
verification process.

More than a few studies also exist where condition/event
systems (C/E) are used in PLC program verification [104].
In Hanisch et al.’s study [47], a variant of C/Es (Timed Net
C/E4) is used, and IL of PLCs is transformed to C/E mod-
els. They use their own model checking tool in their study.
Another early study by Rausch and Krogh [95] also uses
Timed Net C/E and transform them to SMV models using
a rule-based engine. Kowalewski et al. [66] also used C/Es
together with the HyTech tool [52] to perform reachability
analysis. A more recent study by Vyatkin et al. [108] also
uses net C/Es and presents a framework supporting conver-

4 Timed Net C/E’s actually use Petri nets in representation of internal
dynamics. Nevertheless, we will be discussing them together with other
condition/event system-based approaches.

123



www.manaraa.com

Model checking practices on verification of PLC software 953

sion from state charts and model checking using SESA tool.
Pang and Vyatkin [88] perform conversion from function
blocks to C/Es, but did not apply model checking in their
studies.

With the widespread usage of object-oriented design and
UML models, there also exist some studies that use UML
state charts in model checking process. Sacha [98] defined
finite state timemachines and use it as an intermediate format
in conversion between state machine diagrams and UPPAAL
models. Klotz et al. [64] also use UML state chart models
and transform them to NuSMV models in verification of a
case filling machine. They were able to verify basic liveness
and safety properties in around 80 s for a system model with
three state charts.

Wardana et al. [110] used continuous function charts
(CFC), a graphical programming language widely used in
process industry, and model check a state space with three
million states around 50 s using UPPAAL. Mazzolini et al.
[78] usedMATLABstate flowcharts and performverification
of a shoe manufacturing plant model with Simulink Design
Verifier in 35 s where the model contained 28 states, 34
transitions, and 21 variables. Jimenez-Fraustro and Rutten
[60] also use Simulink in verifying PLC programs modelled
using a data-flow language SIGNAL [71]. Weissmann et al.
chose to apply model checking approach on PLC programs
of industrial robot systems programmed using a special pur-
pose VKRC language. In their paper, they translate VKRC
programs into Promela models and perform model checking
using SPIN [111]. They focused on deadlocks in their stud-
ies and were able to perform successful model checking to
systems with around a thousand variables belonging to 10
different processes in around 2 min. The study by Anjos et
al. [3] can also be mentioned where LabView-UPPAAL con-
version is performed in order to model check robot controller
systems. Even though a practical PLC program conversion
was not implemented in the study, the authors mentioned the
ease of conversion from LabView models to PLC programs
in the paper.

In a few other studies, nonconventional or special design
modelling languages have been used to specify PLC pro-
grams. Thapa et al. [105] used timed version of their
Message-Based Part Graph (MPSG) modelling language
and transformed PLC models to SMV models. Vulgarakis
and Causevic [107] use REMES, a modelling language for
embedded systems and extend the language for interrupt sup-
port to be used in PLC model checking with UPPAAL.

Biallas et al.’s implementation [10], called Arcade.PLC,
uses an internal representation that can be obtained by trans-
forming text-based formats: SL and IL. Their system also
supports Siemens SIMATIC S7’s statement list format. They
also implement their own model checker operating on their
internal representation format and used abstract interpreta-
tion to implement the model checker. Their model checker

is capable of modelling checking past time LTL and ∀CTL
specifications.

In their work [5], Barbosa et al. support a wide range of
IEC61131-3 standard PLC programming languages
(ST, SFC, FBD, and LD) coded in PLCOpen5 XML format
by implementing adapters that transform program organiza-
tion units to the B-method’s [72] specification format. They
used the ProBmodel checker [1] to verify safety and liveness
properties of the door subsystem of trains in a railway project
in about 10 min.

Since most of the widely used model checkers merely
exist in very early days, earliest studies use their own tool for
model checking like the study by Halbwachs et. al [45] using
LESAR verification tool and Moon [84] using relay ladder
logic and their own model checker implementation.

As a final group of studies, we shallmention automatic test
case generation and conformance testing usingmodel check-
ing tools and models on PLC systems. Studies by de Assis
Barbosa et al. [22] and de Vasconcelos Oliveira et al. [23] use
binary logic diagrams, a standard defined by instrument soci-
ety of America, which is then transformed into IEC 61131-
3 standards and test case generation is performed. Both of
the studies use UPPAAL TRON and focus on conformance
of models and PLC programs. Different from these studies,
Heimdahl et al. used NuSMV to model check a flight guid-
ance system modelled using RSML−e (requirements speci-
fication model). During model checking process, Heimdahl
et al. providedmodel checker with test criterion formulations
as a verification conditions. That wayNuSMV creates a trace
that can be used in testing purposes [50].

All of the studies discussed above provide a different
approach to solve the problems they face duringmodel check-
ing PLC programs using conventional approaches. Reimple-
menting the studies listed above can be challenging; however,
their way of solving the shortcomings of standards in their
domains can be very influential for the researchers and prac-
titioners working on the area.

9 PLC model checking in industry

Proper adoption of formal methods is an old debate subject
in software industry rooted back to 1990s [46]. In case of
automation and control industry, the concerns for obtaining
the necessary expertise does not vanish. In their paper on
formal methods in PLC programming, Frey and Litz stated
in 2000 “Although being a rather intuitive discipline for a
long time, industrial PLC programming will be more and
more supported by formal methods” [37]. In this section,
we would like to mention some applications in the industry

5 PLCOpen XML formats for IEC61131-3 standards: http://www.
plcopen.org/pages/tc6_xml/downloads/tc6_xml_v201_technical_doc.
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that adopt the approaches and/or tools in the papers we have
examined in the former sections.

The earliest attempts on usingmodel checking on aviation
industrywereNasa’s Java PathFinder, where autonomyflight
softwarewas transformed to Promelamodels and checked by
SPIN model checker [49]. These earlier attempts were not
able to gain wider usage in avionics industry until recently.

The article by Cofer et al. [18] grounds four barriers in
using formal methods in industry and especially in avionics
industry. Three of these barriers are the cost of using formal
analysis, building consistent models with the problem, and
the use of unfamiliar notations. Cofer claims these barriers
can be overcome by using model-based development. In the
paper, the fourth barrier which is performance requirements
of tools is being improved as the Moore’s law progresses.

In a study on model checking Airbus’ ground spoiler (part
of an aircraft wing flaps) controller function, Lustre speci-
fication language and Luster model checker were used by
Bochot et al. [11]. The study contains a detailed discussion
of the model checking the outcomes of the approach; the two
key problems mentioned in those outcomes were the 48-h
verification time using a decent computer and the difficulties
in transforming informal specifications to formal ones.

In 2009, Steven P. Miller commented about the same situ-
ation in his paper and claimed there is a growing application
area for model checking by the utilization of model-based
development tools like MATLAB Simulink�6 and Esterel
Technologies Scade Suite™7 especially in avionics and auto-
motive industries.

A recent study by Miller et al. [82] introduces the uti-
lization of Halbwachs et al.’s approach [45] in an adaptive
airline control system. Rockwell Collins and University of
Minnesota have collaborated to represent Simulink models
and State flowcharts in Lustre formal specification language
as an intermediate format. From Lustre format, they were
able to transform the specifications into the input language
of three differentmodel checkers includingSMVand twodif-
ferent theorem provers (see Fig. 9). In this study, they were
able to check around 500 properties and corrected around
100 errors this way.

The use of model checking PLC programs is not only lim-
ited to avionics industry, it has also been applied in railway
control systems. A very recent study by Ferrari et al. [34]
works on General Electric Transportation System’s Auto-
matic Train Protection system by transforming Simulink
programs to NuSMV models. There are also other studies
[31,73] in the same domain in industrial-sized systems; how-
ever, their primary focus is not PLCs.

6 The Mathworks, Simulink Product Description: http://www.
mathworks.com/help/simulink/gs/product-description.html.
7 Esterel Technologies, SCADE Suite Product Description: http://
www.esterel-technologies.com/products/scade-suite/.

Fig. 9 Model checking by model-based development as implemented
in [82]

Table 13 Number of studies related to different programming lan-
guages in 5-year periods

PLC prog. Textual LD SFC FBD Petri net Other

–1999 1 3 1 0 1 5

2000–2004 4 3 10 0 3 3

2005–2009 4 3 0 3 2 8

2010– 0 2 0 5 2 3

In addition to model checking, the application of formal
methods in industrial systems is a very broad topic, which
needs the inclusion of various different aspects of formal
methods and also widely applied techniques like discrete
event system approach [15,21]. Surveys that focus on indus-
trial areas rather than PLC programs can also be found in the
literature [32,68].

In this section,wehave tried to summarize recent advances
in industry that transform PLC programs and utilize model
checking directly on them. It can be seen that in industry
current trend in the application of model checking PLC pro-
grams is using model-based development tools on symbolic
model checkers like NuSMV.

10 Open problems and research challenges

Examining the historical development of the PLC model
checking studies, we can see in Table 13 that the FBDmodel
checking area contains the majority of the papers published
in the last 5 years. Model checking textual PLC programs
seem to saturate during 2000s, although LDs being almost
the same age as textual programs seem to have a constant pace
of publications since they can be easily converted to propo-
sitional logic representations. The ability to use Petri nets at
a more abstract level even before the PLC program is pro-
duced makes them an area that is being studied at a constant
pace starting from 2000s. SFC-based PLC model checking
has its golden era in the beginning of 2000s before being
replaced by FBDs, which are being widely used in industry
today. Nonstandard programming languages are also being
constantly studied in order to overcome some difficulties
like modelling PLC-specific programming constructs (e.g.,
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TONs) or to bridge the gap between widely used modelling
tools (e.g., UML and LabView).

After examining the model checking studies performed in
the area of PLC software verification, we shall present some
important common practices that were frequently applied in
the studies. After discussion of common practices, we are
going to present some open challenges and key points that
should be considered during conducting research in the area.

10.1 Common challenges

The challenges that were faced during specific PLCprogram-
ming areas are explained in the related sections, but the com-
mon challenges that are faced during the studies in the survey
can be summarized as follows:

– State Space Explosion Especially textual programs pos-
sess a more granular structure, and further abstractions
are needed to be applied during the automatic translation
process or after the translation process manually. These
abstractions aim to gather equivalent states and remove the
unnecessary ones to shrink the state space by automatic
conversion of the textual program. Many different tech-
niques are applied in order to overcome state space explo-
sion including applying further abstractions like compact-
ing recurring place clusters inside a Petri net into a single
place.
Asmentioned, these further abstractions can be done auto-
matically by applying a second step of automatic process
during the conversion. This is often done by directly (with-
out any abstraction) converting source code to an interme-
diate format using a rule-based system. Successively, fur-
ther abstractions are applied over the intermediate model
and another conversion is performed to produce input to
the target model checking tool.
These abstractions are performed manually in some stud-
ies, but these situations negatively affected the automation
of the process. Another point where manual intervention
applied is over the source of PLC program. A subset of
the source language instruction set is selected in almost
all of the studies, and additionally, in most of the studies,
only the boolean variables are selected to be included in
the translation process. Amore effort-demanding solution
is applied by developing specialized model checkers for
the specific case.

– Model Consistency The usual problem in model checking
is to ensure that the builtmodel to be checked is correct and
the model represents the system consistently. For the PLC
programming domain, the automatic conversion is eas-
ier compared to conventional programming, because con-
ventionally PLC program development life cycle already
starts with state-based representations like automata or
Petri nets. PLCprogramsusingmostly primitive data types

and boolean variables make the process even easier. The
hard part is to model the timing constructs and reflect the
real-time nature of the PLC programs. The most common
solution to this problem is to apply divide and conquer
strategy and reuse manually converted and heavily tested
timed components of PLC programs in automating the
conversion process.

– Specifying Properties to be Checked A problem almost as
hard as building a correct model is to correctly specify the
properties to be checked using the model. Due to its low-
level nature anddevelopment life cycle, PLCprograms can
be more easily represented with state transition systems.
However, when it comes to property specification, model
checkers require temporal logic to be used as medium that
requires expertise in formal methods and mathematical
modelling area. As technology progresses, using natural
languageprocessing or conversion froma tabular format to
extract specifications inLTLorCTL is expected to become
more powerful by the industry. Currently, it seems to be
one of the most appealing research directions as well.

– Representing PLC execution cycle A common challenge
that was faced in most of the studies above is reflecting the
PLC execution cycle to the model checking environment
in a convenient way. To implement a complete system,
researches have chosen to model distinct phases of the
PLC execution cycle as separate modules for the model
checker. Moreover, a PLC cycle sequencer module is also
included in themodel often tomimic the timing properties
between sequences of PLC cycles. In addition to those
phases, modules to model interrupts and triggers are also
included in the model in some studies.

– Modelling TONs Another very common challenge is the
modelling of TONs (timer on-delay). TONs are used to
enable an output of the PLC for a period of time when
an input of TON receives true input. TONs are important
for PLC programs, because they are excessively used to
ensure timing properties of PLCs explicitly inside the pro-
gram. A frequently applied solution in handling TONs is
using a Timed Automata and a model checker that support
real-time model checking like UPPAAL.

10.2 Future research directions

Apart from the mostly discussed challenges and proposed
solutions above, there are also less frequently discussed solu-
tions,which can be a good point to direct future research.One
of those problems is the conformance of generated models
with the original program. There are studies that directly
discuss this kind of problems and also some studies that pro-
pose a solution together with their model checking approach.
These solutions usually involve conformance testing of the
model used, and a model is directly generated from the PLC
program. Generating the PLC program and the model to be
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verified from a common ancestormodel is another solution to
this problem, butmost of the studies still do not present sound
discussions about the problem or the consistency concerns
raised by this approach.

Another common drawback is the lack of performance
considerations about the solution presented in the papers.
Most of the time authors point to the number of defects found
by their approach, but in our humble opinion this informa-
tion becomes subjective if the data about size of the models
being checked or the performance numbers are not present in
the discussion. A serious discussion of the mentioned infor-
mation about the study is needed to reason about practical
aspects of the proposed approach.

Although still being tightly dependent to the improve-
ments of model checking performance, there exists a small
number of studies in model checking networked PLCs or
multitasking PLCs. Even though it can be hard to overcome
the state space explosion problem in such purposes, it can be
still interesting to push the limits by applying abstractions in
this area.

We would also like to mention two more interesting com-
monalities in the discussed studies. From the current per-
spective, it can be seen that SMV and UPPAAL dominate
the model checking practices on PLC programs. There can
be many reasons behind this, but we believe the most effec-
tive two are tool support/ease of use and simplistic syntax
that can be more easily translated from a PLC program. It
is remarkable that SPIN, which is another popular model
checker, is used in significantly fewer studies. Another inter-
esting fact is that none of the discussed Petri net studies were
applied on the area of railway control systems even though
they are known to be applied in such systems frequently.

Most of the present challenges and future studies pre-
sented in this section is related to state space explosion prob-
lem. This situation is not surprising especially for model
checking practitioners and puts the emphasis on state space
reduction, being the usual suspect whenever model checking
is applied in verification purposes.

Lastly, we would also like to discuss the future challenges
introduced by the development of Web technologies and
cloud infrastructure. Latest achievements in cloud computing
and Internet of Things area awaken a demand in industrial
automation on gathering and integrating information from
data sources to enterprise software systems via PLCs. Many
mainstream PLC hardware/software manufacturers released
Web-based versions of their PLC visualization and program-
ming software like Siemens,8 Beckhoff9 and other software

8 Siemens WinCC/Web Navigator: http://w3.siemens.com/mcms/
human-machine-interface/en/visualization-software/scada/wincc-opt
ions/wincc-web-navigator/Pages/Default.aspx.
9 Beckhoff TwinCAT PLC HMI Web: http://www.beckhoff.com/
english.asp?twincat/twincat_plc_hmi_web.htm.

manufacturers.10,11,12,13 PLC hardwaremanufacturers even
make it possible to access the PLC software by Web servers
that runs on the PLC itself. Together with the integration
issues, becoming more accessible brings security constraints
into the automation control area increasing the need for the
verification of security requirements in PLCcontrol and com-
munication [65,70]. This situation unveils a new potential to
verification studies focusing on software and protocol secu-
rity like Murphi [28] and AVISPA [4] in the next decade in
PLC software verification.

11 Conclusion

Verification of PLC programs is a very widely studied area of
research, and applyingmodel checking in such purposes con-
tains numerous studies proposing the integration of a num-
ber of model checking tools over a variety of PLC program-
ming and modelling methods. In this paper, we present an
overview of these methods by classifying them according to
the IEC 61131 standards. Additionally, we present additional
sections regarding Petri nets as being almost the most widely
used modelling approach when it comes to PLC program-
ming as well as various different nonconventional techniques
proposed in the area.

During our classifications, we followed a practical app-
roach and provided the prominent properties of the studies
and the relations between these properties assuming the read-
ers intention is to get an idea about the appropriate approach
according to the area, size of the system, and the type of
the programming language she is planning to use in the
future. We believe that our discussions are not only capa-
ble of directing the practitioners aiming to integrate model
checking approaches in their software production processes
but also provides an overview of the state-of-art research and
open problems for the researchers interested in the area.
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